Rabu, 11 Januari 2012

Bahan Ajar Elektronika Dasar


background image
BAHAN AJAR
 

 



 
ELEKTRONIKA 
DASAR 

background image
SATUAN  ACARA  PERKULIAHAN
MATA  KULIAH  ELEKTRONIKA DASAR
KODE / SKS : MTK224 / 2  SKS 

Dosen Pengasuh  : Ahamad Fali Oklilas
NIP : 
132231465 
Program Studi 
: Teknik Komputer 
Kelas/angkatan : 
Teknik 
Komputer/2006 
Minggu
ke 
Pokok Bahasan
  
Sub Pokok
Bahasan 
Tujuan
Instruksional
Khusus 
Ref.  
1 Tingkat 
Energi 
Pada 
Zat Padat  



Transport Sistem Pada 
Semikonduktor  
Pengantar




Energi Atom


Prinsip Dasar
Pada Zat Padat



Prinsip
Semikonduktor
 
Muatan Partikel
Intensitas,
Tegangan dan
Energi

Satuan eV untuk
Energi

Tingkat Energi
Atom
Struktur Elektronik
dari Element

Mobilitas dan
Konduktivitas
Elektron dan Holes

Donor dan Aseptor
Kerapatan Muatan
Sifat Elektrik
 
Karakteristik Dioda 
Prinsip Dasar  
Rangkaian  terbuka
p-n Junction
Penyerarah pada p-
n Junction
 
Karakterisrik Dioda 
Sifat Dioda 
Sifat Volt-Ampere
Sifat
ketergantungan
Temperatur
Tahanan Dioda
Kapaitas
 
1,2 

background image
Karakteristik Dioda 
Jenis Dioda 
Switching Times
Breakdown Dioda
Tunnel Dioda
Semiconductor
Photovoltaic Effect
Light Emitting
Diodes
 
5 Rangkaian 
Dioda 
Dasar  
Dioda 
sebagai 
elemen rangkaian
Prinsip garis beban
Model dioda
Clipping
 
Rangkaian Dioda 
Lanjut  
Comparator
Sampling gate
Penyearah
Penyearah
gelombang penuh
Rangkaian lainnya
 
MID TEST/UTS 
Rangkaian Transistor  
Sifat Transistor 
Transistor Junction
Komponen
Transistor
Transistor Sebagai
Penguat
(Amplifier)
Konstruksi
Transistor
 
Rangkaian Transistor  
Sifat Transistor  
Konfigurasi
Common Base
Konfigurasi
Common Emitor
CE Cutoff
CE Saturasi
CE Current Gain
Konfigurasi
Common Kolektor
 
Rangkaian Transistor  
Transistor  Pada
Frekuensi
Rendah  
Analisis Grafik
Konfigurasi CE
Model Two Port
Device
Model Hybrid
Parameter h
 

background image
10  
Rangkaian Transistor  
Transistor  Pada
Frekuensi
Rendah  
Thevenin & Norton
Emitter Follower
Membandingkan
Konfigurasi
Amplifier
Teori Miller
  
11 Rangkaian 
Transistor 

Field Effect Transistor 
Transistor Pada
frekuensi
Tinggi

Sifat Dasar


Rangkaian
Dasar  
Model Hybrid

JFET
Karakteristik Volt
Amper

FET
MOSFET
Voltager Variable
Resitor
 
12 
Studi Kasus  
Penerapan
Transistor 
Sebagai Osilator
Sebagai Penguat
Sebagai Sensor
 
FINAL TEST 

Buku Acuan : 
1.
Chattopadhyay, D. dkk, Dasar Elektronika, Penerbit Universitas Indonesia, Jakarta:1989. 
2.
Millman, 
Halkias, 
Integrated 
Electronics,        
Mc Graw Hill, Tokyo, 1988 
3.
http://WWW.id.wikipedia.org 
4.
http://www.tpub.com/content/ 
5.
http://www.electroniclab.com/ 
Palembang, 7 Feb 2007 
Dosen Pengampu,
 


Ahmad Fali Oklilas, MT 
NIP. 132231465 

 

background image
ATURAN PERKULIAHAN ELEKTRONIKA DASAR  
DAFTAR HADIR MIN = 80% X 16= 14
KOMPONEN NILAI 
TUGAS/QUIS  = 25%
UTS = 
30% 
UAS = 
45% 
Nilai Mutlak
86 – 100   = A
71 – 85    = B 
56 – 70   = C
41 – 55   = D
≤ 40  
= E 

Keterlambatan kehadiran dengan toleransi 15 menit
 
Buku Acuan : 
1.
Chattopadhyay, D. dkk, Dasar Elektronika, 
Penerbit Universitas Indonesia,
Jakarta:1989. 
2.
Millman, Halkias, Integrated  Electronics,      
Mc Graw Hill, Tokyo, 1988 
3.
http://WWW.id.wikipedia.org 
4.
http://www.tpub.com/content/ 
5.
http://www.electroniclab.com/ 

 

 

 


 

 

 

background image

Tingkat Energi Pada Zat Padat  
Electron’s Energy Level 
The NEUTRON is a neutral particle in that it has no 
electrical charge. The mass of the neutron is
approximately equal to that of the proton. 
An ELECTRON’S ENERGY LEVEL is the amount of 
energy required by an electron to stay in orbit. Just by 
the electron’s motion alone, it has kinetic energy. The
electron’s position in reference to the nucleus gives it
potential energy. An energy balance keeps the 
electron in orbit and as it gains or loses energy, it
assumes an orbit further from or closer to the center 
of the atom.  
SHELLS and SUBSHELLS are the orbits of the 
electrons in an atom. Each shell can contain a
maximum number of electrons, which can be 
determined by the formula 2n 
2
. Shells are lettered K 
through Q, starting with K, which is the closest to the
nucleus. The shell can also be split into four subshells 
labeled s, p, d, and f, which can contain 2, 6, 10, and
14 electrons, respectively.  
VALENCE is the ability of an atom to combine with 
other atoms. The valence of an atom is determined by 
the number of electrons in the atom’s outermost shell.
This shell is referred to as the VALENCE SHELL. The 
electrons in the outermost shell are called VALENCE
ELECTRONS.  

background image
IONIZATION is the process by which an atom loses 
or gains electrons. An atom that loses some of its 
electrons in the process becomes positively charged
and is called a POSITIVE ION. An atom that has an 
excess number of electrons is negatively charged and
is called a NEGATIVE ION.  
ENERGY BANDS are groups of energy levels that 
result from the close proximity of atoms in a solid. The 
three most important energy bands are the
CONDUCTION BAND, FORBIDDEN BAND, and
VALENCE BAND. 
Electrons and holes in semiconductors 
As pointed out before, semiconductors distinguish 
themselves from metals and insulators by the fact that 
they contain an "almost-empty" conduction band and
an "almost-full" valence band. This also means that we 
will have to deal with the transport of carriers in both
bands.  
To facilitate the discussion of the transport in the 
"almost-full" valence band we will introduce the
concept of holes in a semiconductor. It is important for 
the reader to understand that one could deal with only
electrons (since these are the only real particles 
available in a semiconductor) if one is willing to keep
track of all the electrons in the "almost-full" valence 
band.  
The concepts of holes is introduced based on the 
notion that it is a whole lot easier to keep track of the 
missing particles in an "almost-full" band, rather than
keeping track of the actual electrons in that band. We 
will now first explain the concept of a hole and then
point out how the hole concept simplifies the analysis.  
Holes are missing electrons. They behave as 
particles with the same properties as the electrons 
would have occupying the same states except that
they carry a positive charge. This definition is
illustrated further with the figure below which presents 

background image
the simplified energy band diagram in the presence of
an electric field.  
band1.gif 
Fig.2.2.12 Energy band diagram in the presence
of a uniform electric field. Shown are electrons
(red circles) which move against the field and
holes (blue circles) which move in the direction of
the applied field.
 
A uniform electric field is assumed which causes a 
constant gradient of the conduction and valence band 
edges as well as a constant gradient of the vacuum
level. The gradient of the vacuum level requires some
further explaination since the vacuum level is 
associated with the potential energy of the electrons
outside the semiconductor. However the gradient of 
the vacuum level represents the electric field within
the semiconductor.  
The electrons in the conduction band are 
negatively charged particles which therefore move in a 
direction which opposes the direction of the field.
Electrons therefore move down hill in the conduction
band. Electrons in the valence band also move in the 
same direction. The total current due to the electrons
in the valence band can therefore be written as:  
(f36) 

background image
where  V is the volume of the semiconductor, q is 
the 
electronic charge
 and v is the electron velocity. 
The sum is taken over all occupied or filled states in
the valence band. This expression can be reformulated 
by first taking the sum over all the states in the
valence band and subtracting the current due to the 
electrons which are actually missing in the valence
band. This last term therefore represents the sum 
taken over all the empty states in the valence band,
or:  
(f37) 
The sum over all the states in the valence band 
has to equal zero since electrons in a completely filled
band do not contribute to current, while the remaining 
term can be written as:  
(f38) 
which states that the current is due to positively 
charged particles associated with the empty states in
the valence band. We call these particles holes. Keep 
in mind that there is no real particle associated with a
hole, but rather that the combined behavior of all the
electrons which occupy states in the valence band is 
the same as that of positively charge particles
associated with the unoccupied states.  
The reason the concept of holes simplifies the 
analysis is that the density of states function of a 
whole band can be rather complex. However it can be
dramatically simplified if only states close to the band 
edge need to be considered.  
As illustrated by the above figure, the holes move 
in the direction of the field (since they are positively 
charged particles). They move upward in the energy
band diagram similar to air bubbles in a tube filled 
with water which is closed on each end.  

background image
Distribution functions 
1. Introduction 
The distribution or probability density functions 
describe the probability with which one can expect 
particles to occupy the available energy levels in a
given system. While the actual derivation belongs in a 
course on statistical thermodynamics it is of interest to
understand the initial assumptions of such derivations 
and therefore also the applicability of the results.  
The 
derivation
 starts from the basic notion that 
any possible distribution of particles over the available 
energy levels has the same probability as any other
possible distribution, which can be distinguished from 
the first one.  
In addition, one takes into account the fact that 
the total number of particles as well as the total
energy of the system has a specific value.  
Third, one must acknowledge the different 
behavior of different particles. Only one Fermion can
occupy a given energy level (as described by a unique 
set of quantum numbers including spin). The number
of bosons occupying the same energy levels is 
unlimited. Fermions and Bosons all "look alike" i.e.
they are indistinguishable. Maxwellian particles can be 
distinguished from each other.  
The 
derivation
 then yields the most probable 
distribution of particles by using the Lagrange method
of indeterminate constants. One of the Lagrange
constants, namely the one associated with the 
average energy per particle in the distribution, turns
out to be a more meaningful physical variable than the 
total energy. This variable is called the Fermi energy,
E
F
.  
An essential assumption in the derivation is that 
one is dealing with a very large number of particles. 
This assumption enables to approximate the factorial
terms using the 
Stirling approximation
.  

Tidak ada komentar:

Posting Komentar